Glycol Derived Carbon- TiO2 as Low Cost and High Performance Anode Material for Sodium-Ion Batteries
نویسندگان
چکیده
منابع مشابه
Glycol Derived Carbon- TiO2 as Low Cost and High Performance Anode Material for Sodium-Ion Batteries
Carbon coated TiO2 (TiO2@C) is fabricated by a convenient and green one-pot solvothermal method, in which ethylene glycol serve as both the reaction medium and carbon source without the addition of any other carbon additives. During the solvothermal process, ethylene glycol polymerize and coordinate with Ti4+ to form the polymeric ligand precursor, then the polymer brushes carbonize and convert...
متن کاملNitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries.
Between the sheets: Sodium-ion batteries are an attractive, low-cost alternative to lithium-ion batteries. Nitrogen-doped porous carbon sheets are prepared by chemical activation of polypyrrole-functionalized graphene sheets. When using the sheets as anode material in sodium-ion batteries, their unique compositional and structural features result in high reversible capacity, good cycling stabil...
متن کاملCoaxial MoS₂@Carbon Hybrid Fibers: A Low-Cost Anode Material for High-Performance Li-Ion Batteries.
A low-cost bio-mass-derived carbon substrate has been employed to synthesize MoS₂@carbon composites through a hydrothermal method. Carbon fibers derived from natural cotton provide a three-dimensional and open framework for the uniform growth of MoS₂ nanosheets, thus hierarchically constructing coaxial architecture. The unique structure could synergistically benefit fast Li-ion and electron tra...
متن کاملCoaxial MoS2@Carbon Hybrid Fibers: A Low-Cost Anode Material for High-Performance Li-Ion Batteries
A low-cost bio-mass-derived carbon substrate has been employed to synthesize MoS2@carbon composites through a hydrothermal method. Carbon fibers derived from natural cotton provide a three-dimensional and open framework for the uniform growth of MoS2 nanosheets, thus hierarchically constructing coaxial architecture. The unique structure could synergistically benefit fast Li-ion and electron tra...
متن کاملMicro-nano structure hard carbon as a high performance anode material for sodium-ion batteries
Superior first-cycle Coulomb efficiency (above 80%) is displayed by filter paper-derived micro-nano structure hard carbon, and it delivers a high reversible capacity of 286 mAh g-1 after 100 cycles as the anode for Na-ion battery at 20 mA g-1. These advantageous performance characteristics are attributed to the unique micro-nano structure, which reduced the first irreversible capacity loss by l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2017
ISSN: 2045-2322
DOI: 10.1038/srep43895